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Abstract

Intrinsic image decomposition describes an image based
on its reflectance and shading components. In this paper we
tackle the problem of estimating the diffuse reflectance from
a sequence of images captured from a fixed viewpoint under
various illuminations. To this end we propose a deep learn-
ing approach to avoid heuristics and strong assumptions on
the reflectance prior. We compare two network architec-
tures: one classic ’U’ shaped Convolutional Neural Net-
work (CNN) and a Recurrent Neural Network (RNN) com-
posed of Convolutional Gated Recurrent Units (CGRU). We
train our networks on a new dataset specifically designed
for the task of intrinsic decomposition from sequences. We
test our networks on MIT and BigTime datasets and out-
perform state-of-the-art algorithms both qualitatively and
quantitatively.

1. Introduction
Intrinsic image decomposition describes an image based

on its reflectance and shading components with many appli-
cations ranging from stabilization, re-colorization, relight-
ing to texture and virtual object insertion to mention a few.
Given an image I , this problem aims at disentangling the
shading component S from the albedo R, which is referred
to as reflectance or diffuse reflectance: I = R.S. The prob-
lem of Single Image Intrinsic Decomposition (SIID) is an
ill-posed problem as we have infinite number of potential
solutions for a single image. To reduce the ambiguity of the
decomposition, the given image can be accompanied by a
sequence of images captured under different lighting condi-
tion. This prevents common failure cases of single image
methods such as difficulties to handle hard cast shadows
and bright specularities. We refer to it as Multiple Image
Intrinsic Decomposition (MIID).

Traditional approaches, regardless of using a single in-

Figure 1: At training time and inference time, our neural
network processes a sequence of images (I)t captured un-
der various (uncorrelated) illuminations, and produces the
time-invariant reflectance image R.

put image or a sequence of images, estimate the reflectance
through direct optimization. The quality of the result highly
depends on heuristics modeling and hand-crafted priors
on shading and reflectance. Classical optimization-based
methods like [18] disentangle reflectance and shading by
formulating strong assumptions on reflectance that are de-
rived from prior knowledge. For instance, in [18], it is as-
sumed that pixels with similar normalized intensity profile
over time are likely to have the same shading. The result
shown in Fig. 2(a) clearly depicts seams between clusters
of pixels that are supposed to share the same shading over
time. Increasing the number of clusters (Fig. 2(b)) does
not improve the result, which implies that these methods
strongly depend on the assumption over the reflectance pri-
ors. One of the main advantage of using deep learning over
classic approaches is to get rid of explicit priors, and rather,
to learn them implicitly.

Another flaw of prior-based approaches lies in how these
priors are tuned. Fig. 2(c) displays what we obtain with
different settings for α coefficient that modulates the regu-
larization term. This term forces the solution to be close to
the mean chromaticity image. Since the heuristics that are
used to disambiguate the intrinsic decomposition are not di-
rectly derived from a mathematical formulation of the prob-
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Figure 2: Results of [18]. (a) Reflectance obtained with 20
pixel clusters and α = 100.0. (b) Effects of changing the
number of pixel clusters (60 instead of 20). (c) Effects of
different parameter tuning (α = 50.0 instead ofα = 100.0).
(d) Poor illumination invariance: reflectance estimated from
a different set of shaded images (same parameters as in (a)).

lem, but rather from prior knowledge of how we expect the
reflectance to be, finding the right coefficient to balance the
cost function ends up to unhandy parameter tuning.

Moreover, intrinsic image decomposition should be in-
variant to illumination changes, which means that the de-
composition should be consistent over a sequence of frames
with varying illumination. This is the objective that [22]
aims at, by training on sequences of various illuminations
and forcing the predicted reflectance to be similar over the
same sequence. However there is no guaranty that the net-
work can learn this property at the inference time.

In this paper we propose a new intrinsic image decom-
position method that estimates the reflectance image from
a sequence of images captured from a fixed viewpoint un-
der various illuminations (Fig. 1). To this end we pro-
pose a deep learning approach to avoid heuristics and strong
assumptions on reflectance priors. We compare two net-
work architectures: one classic ’U’ shaped Convolutional
Neural Network (CNN) and a Recurrent Neural Network
(RNN) composed of Convolutional Gated Recurrent Units
(CGRU). We train our network on a new dataset specifi-
cally designed for the task of intrinsic decomposition from
sequences. We test our network on MIT [11] and Big-
Time [22] datasets and outperform state-of-the-art algo-
rithms both qualitatively and quantitatively.

2. Related Work
Intrinsic image decomposition from a single image The
intrinsic image decomposition domain is mainly repre-

sented by methods that estimate the reflectance by using
priors-based optimization, from a single image and without
any additional data. For a long time they were largely dom-
inated by the simple yet efficient Color Retinex algorithm
[11]. It decomposes the image by assuming that a change in
color is due to a change in shading when the chromaticity
remains constant, and due to a change in reflectance oth-
erwise. This idea derives from the prior knowledge that
the reflectance is somehow closely related to the chromatic-
ity. In [35], a non-local reflectance constraint is included
to the Retinex formalism, by enforcing reflectance similar-
ity between pixels that share similar chromaticities. Non-
local reflectance priors were adopted by subsequent works
[20, 34, 16, 26, 24, 9], as well as non local shading priors
[20, 16] by adding valuable improvement to widely used lo-
cal reflectance and shading priors. For example in [9], the
dimensionality of the problem is reduced by adding a global
sparsity prior, assuming that the final reflectance is made
from a sparse set of basis colors. Given the ill-posed nature
of the intrinsic decomposition problem, formulating novel
hand-crafted priors has been a crucial issue. Deep learn-
ing is proposed as an alternative to bypass this approach by
learning implicit priors from the data itself.

Intrinsic image decomposition with deep learning Ma-
chine learning has been proposed as a solution to the prob-
lem in the seminal work on relative reflectance judgments
[28], trained on human judgment dataset [3]. Likewise in
[36], it is propose to learn relative reflectance judgments,
but as a first step before recovering dense reflectance map
like in [3]. Indeed machine learning is used as a way to
estimate priors, not to estimate the final reflectance itself.
Direct reflectance estimation by a CNN was an original
idea by [27], improved by [30] that introduces the use of
a U-net [29] for intrinsic decomposition. There has been
many variations of these approaches [21, 2, 8, 15] but to
our knowledge, only [22] suggests the use of sequences
of illumination-varying images to train a neural network.
However it is still a one-to-one process at inference time,
thus well-adapted to classic CNN encoder-decoder archi-
tecture. On the other hand our method is a many-to-one
process at training time and inference time.

Intrinsic decomposition from image sequences Meth-
ods that benefit from temporal constraints by processing
videos are numerous [20, 34, 16, 26, 24]. On the contrary,
our approach does not require any temporal consistency be-
tween views in our sequences, nor extra information (such
as depth [5, 20, 1] or user input [25]). Our problem formu-
lated our way was initially addressed by [32]. They pro-
duce reasonable results by taking advantage of prior knowl-
edge on natural images. However in [23] it is shown that
such results may severely be altered by a biased illumina-



tion. More recent solutions were provided to the multi-view
problem [19, 7] (movable viewpoint). In [19], the inferred
3D geometry imposes shading constraints for intrinsic de-
composition. In [18], a state-of-the-art solution is proposed
to solve the initial fixed viewpoint problem [32, 23]; they
alleviate the lack of geometry by cleverly clustering pix-
els that share the same radiance profile over time. But like
previous optimization-based work, their decomposition al-
gorithm strongly depends on reflectance heuristics, hand-
made priors and coefficient tuning. As far as we know, we
are the first to adopt neural network to solve this problem,
although neural networks have already been proposed for
other similar applications such as photometric stereo and
general inverse rendering [31, 14].

Recurrent Neural Network (RNN) RNNs are networks
that loop over themselves, so the output is passed as an in-
put at the next iteration. They are ideal to process sequences
of correlated data, such as words in a sentence of frames in
a video. The number of times the network loops over it-
self is not part of its architecture, which makes it flexible to
any sequence length; this is analogous to how convolution
is flexible for the spatial size of inputs. However during the
training, the back-propagated loss gradient tends to vanish
at every iteration: an issue known as vanishing gradients
[12]. To overcome this problem, Long Short-Term Memory
(LSTM) units have been proposed. They are composed of
a memory cell that remembers information of previous se-
quences. The information flow over sequences is regulated
by three gates inside the cell. Applied to images, convo-
lutional LSTMs [33] replace the traditional dense matrix
to vector operations by convolutions. In Gated Recurrent
Units [6], the memory cell is also used as hidden layer, re-
quiring fewer parameters while performing similarly.

3. Model

In this section we describe two architectures that we
compare in section 5: a fully convolutional U-net and con-
volutional GRU, referred to as CGRU. To describe precisely
the architectures, we refer to T as the number of frames in
a sequence, C the number of input image channels, F the
number of output features (or output channels) and (H , W )
the spatial dimensions of input/output images. We feed the
network with tensors of shape T×C×H×W , and obtain a
prediction tensor of size F×H×W . In practice we want to
obtain RGB reflectance images, so F = C = 3. Images are
resized so that their spatial dimensions are either 256×384,
384× 256 or 256× 256 depending on their original ratio.

3.1. U-net

We implemented a ’U’ shaped architecture, that has
already shown some potential in SIID [30, 15, 2, 22].

The original architecture used for medical segmentation
[29, 13], is composed of an encoder and a mirrored decoder.
This classic U-net architecture has been modified for adapt-
ing with our application. Like [22] it takes a sequence of
images but stacks them along the channel dimension, so
that the shape of the input tensor is T.C × H ×W . It is
composed of 6 convolutional layers for the encoder, 6 for
the decoder and one central. Our U-net is lighter than [22]:
each convolutional module consists of a single 2D convolu-
tion (with a stride of 2 for the encoder), a batch normaliza-
tion and a RELU. Indeed due to the limited amount of data
(every sequence is one single training example), we need to
decrease the number of parameters to a reasonable level to
avoid overfitting. In addition each convolutional layer of the
decoder possesses a bilinear interpolation (that doubles the
spatial dimension) and a concatenation of the input signal
of corresponding spatial dimensions (skip-connection).

Since input images are stacked together in the channel
dimension, the length of a sequence has to be fixed, other-
wise the architecture changes (the number of convolutions
of the first encoding layer). The flexible nature of RNNs
makes them better-suited than CNNs to process sequences
of images.

3.2. Convolutional Gated Recurrent Unit (CGRU)

Our second architecture is a Recurrent Neural Network.
Using such RNNs has several advantages over CNNs:

• it needs fewer parameters (thousands instead of mil-
lions) because every image in the sequence is pro-
cessed by units that share the same weights;

• since it loops over the sequence, it can process any
number of frames;

• it requires less GPU memory because the recurrent
loop can be run sequentially.

Following the idea that our model should have as few pa-
rameters as possible so it generalizes well to any kind of
scene, we opt for Gated Recurrent Unit (GRU). Like [33]
with LSTMs, we implemented a convolutional version of
the GRU (CGRU), that replaces matrix-vector operations
by convolutions, so that it processes information both tem-
porally and spatially. Let It be the current input frame and
ht the hidden layer (or output) at time t, the next hidden
layer ht+1 or output of the unit is computed as followed:

zt = σ(Wzi ∗ It +Wzh ∗ ht + bz) (1)
rt = σ(Wri ∗ It +Wrh ∗ ht + br) (2)

h̃t = tanh(Whi ∗ It +Whh ∗ (rt ◦ ht) + bh) (3)

ht+1 = (1− zt) ◦ ht + zt ◦ h̃t (4)

with ∗ denoting the convolution operation, W and b the
weights and biases of the convolutions, ◦ the element-wise



Figure 3: CGRUs can be stacked vertically to enable deep
feature processing. Here two layers 0 and 1 are displayed.
The sequence of output (h0)t of the first layer 0 is provided
to the second layer 1, that outputs a second sequence (h1)t.
The final prediction R is the output h1T of the last layer.

product, σ the sigmoid function and tanh the hyperbolic
tangent. Hidden layers ht are tensors of shape F ×H ×W
and input frames It are tensors of shape C ×H ×W .

The hidden layer h behaves like the memory cell of a
LSTM unit, forgetting and learning information from the
successive frames that are fed to the unit. Intuitively we
can think of it as containing all the illumination-invariant
information of the sequence, which is expected to be the
reflectance. At each iteration, a new input frame passes
through the gates that select the information h will forget
with the reset gate image rt, and update h with the update
gate image zt. Initially the hidden layer is set to 0, which
means we have no prior memory. Eventually when we have
iterated over the whole sequence, the prediction R is the
final hidden layer hT .

It is also possible to stack several layers of CGRUs. In
Fig. 3 we represent two layers 0 and 1. Each recurrent unit
output hlt is not only passed horizontally to the next itera-
tion to be jointly processed with It+1 by the same unit, but
also vertically to another unit as a new input. Units from
other layers do not share the same weights. Stacked layers
can be seen as if the sequence was processed by successive
convolutional layers, which enables deeper feature process-
ing and structure extraction. The final prediction R is the
output hLT of the last layer L (h1T in Fig. 3).

3.3. Achromatic Illumination Assumption

The assumption of the achromatic illumination is com-
mon in the SIID literature [3, 36, 8]. However it is not
clear whether it improves or deteriorates the prediction. It
assumes that the lighting intensity is constant over the se-
quence, equal to (1, 1, 1), which is the case in most scenes
but not always (multiple light sources, colored illumination,

dimming light). As a consequence the shading is greyscale;
we can predict a greyscale reflectance r and recover the tri-
color reflectance R with the median chromaticity of the se-
quence:

R = 3 . r .mediant(
Ict∑
c I

c
t

) with Ict the cth channel of It.

(5)
The relevance of using such assumption is discussed in the
section 5, where both models (achromatic that predicts r
with F = 1 and chromatic that predicts R with F = 3) are
confronted.

3.4. Loss

Our model fitting is supervised by comparing the pre-
diction R and the ground truth reflectance R∗ in the loss
function. We force the prediction to be close to the ground
truth not only in terms of color, but also in terms of gradient
[27]. In [27] however, a L2-norm is used; we use instead an
L1, known to be more robust to outliers. We do not apply
the loss to the shading because our model implies that it is
directly derived from the input sequence and the predicted
reflectance. We tried to add the same shading smoothness
constraint as in [18], but we obtained worse results.

In addition we apply a total variation [10] on the pre-
dicted reflectance. It comes from the observation that nat-
ural images are generally piecewise smooth. In the section
5 we study the influence of the total variation term on the
quality of the images. The final loss function is

L(R,R∗) = ‖R∗−R‖1 + ‖∇R∗−∇R‖1 + ‖∇R‖1. (6)

4. Dataset
Traditionally, SIID methods train their models and eval-

uate their results on 4 datasets: MIT [11], MPI Sintel [4],
IIW [3] and SAW [17]. Nevertheless only MIT is suited
to the task of MIID, since the rest only contain single im-
age examples. Recently a new dataset called BigTime [22]
was introduced, containing sequences on images with time-
varying illumination. However this dataset does not pro-
vide any sort of ground truth or reference data since it was
designed specifically for unsupervised learning of SIID.

Because the MIT dataset alone is not sufficient neither
for training or for evaluation, we crafted our own dataset,
called Washington, composed of real and synthetic images.
Our dataset combines the better of two worlds: sequences
of real images with changing illumination and an image
used as reflectance ground truth. Washington is made of
indoor scenes of various objects on a table. Indoor scenes
are chosen over outdoor so we are able to capture a large di-
versity of illuminations in a controlled environment, which
makes it possible to estimate a pseudo-reflectance for super-
vised training. Indeed to obtain an acceptable ground truth
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Figure 4: A sample of our training set. First two rows: real
data. Last two rows: synthetic data. (a) Pseudo-reflectance
(reference). (b-e) Some images from sample sequences.

and reference image, we capture an image under pseudo-
ambient lighting, which makes the shading almost constant
everywhere. Such image, called pseudo-reflectance, is not
the proper reflectance since it still contains ambient occlu-
sion (inter-shadowing of concave surfaces), but section 5
shows that it is sufficient for the supervision of MIID.

We create our real dataset (see the first two rows in Fig.
4) by capturing sequences of frames from a fixed viewpoint,
and changing the illumination. We used 10 sets of objects;
for each set we create ten various scenes, changing the posi-
tion of the objects and the camera viewpoint, which makes
a total of 100 scenes. From every of these 100 captured
videos, we randomly extract 10 sequences of 30 uncorre-
lated frames (there is not continuous variation of shading
over time). The complete dataset of 1000 sequences of real
images is split into a training set, a validation set and a test
set with a respective proportion of (80% / 10% / 10%). We
make sure that the splits do not share any scenes or objects.

To cope with our issue of not having a ground truth
reflectance (in particular for evaluation since a pseudo-
reflectance image suits well to MIID supervision) we en-
hance our Washington dataset with 780 supplementary se-
quences of synthetic views (see the last two rows in Fig.
4). The synthetic scenes were created and rendered using
Unity; they simulate a plane carrying various 3D objects
from the daily life. Up to 3 point light sources of different
intensities lit the scenes. In addition we use a large collec-
tion of textures and materials to render specularities. The
dataset is split into a training set (700 sequences) and a test
set (80 sequences).

5. Experiments
We perform several experiments to validate the perfor-

mance of our models. First we study the relevance of the
achromatic illumination assumption. Second we observe
the influence of the number of input views on the predicted
reflectance, and validate the recurrent model (CGRU) by
decomposing the result frame by frame. Then we compare
our models to state-of-the-art methods, in term of numeri-
cal, visual and runtime performance. Last but not least we
address some limits of our models.

Training Our models (U-net and CGRU) are trained on
our Washington training set (real images), unless otherwise
stated. The 800 training sequences contain 15 images that
are resized to 384 × 256. At each iteration, network is
fed a single sequence, which means the batch size is one
(huge due to memory requirement). We perform 40 epochs
and the training lasts approximately 10 hours on an NVidia
GTX 1080. We save the model for which the validation
loss (computed on the real Washington validation set) is
minimum. We use Adam optimizer with a learning rate of
0.0005.

Evaluation metrics Like previous experiments in the lit-
erature [27, 30, 22], we use the metrics MSE, LMSE and
DSSIM to evaluate our results. MSE is a scale-invariant
version of the Mean Square Error introduced by [11] to ac-
count for relative reflectance. LMSE is the Local Mean
Square Error [11], which is the MSE computed on 16× 16
overlapping patches (the size matters little according to the
authors). DSSIM is the structural dissimilarity index. Pre-
dicted reflectance images are compared to reference image.
In the case of real Washington dataset, for which we have
no proper ground truth, we compare the prediction to the
pseudo-reference.

5.1. Chromatic versus Achromatic Illumination As-
sumption

In this experiment we validate the use of the achromatic
assumption that models the shading as being greyscale.
Therefore, as detailed in the section 3, instead of predicting
tricolor reflectance we predict a greyscale reflectance and
recover the color thanks to the median chromaticity of the
sequence (equation 5). This assumption is validated on the
Washington real test set and on the MIT dataset. The model
used for this experiment is CGRU with a depth (number
of layers L) of 1. Although there is no significant numer-
ical difference between the chromatic and the achromatic
model on Washington dataset, we notice a strong difference
on MIT dataset in favor of the achromatic model (LMSE =
0.0581 against 0.0866). The superiority of the achromatic
model is qualitatively validated on Washington, as high-
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Figure 5: Qualitative validation of the achromatic illumina-
tion assumption of a sample of the Washington validation
set. (a) Reference. (b) Chromatic model. (c) Achromatic
model.

Figure 6: Performance of U-net and CGRU on Washington
real test set with an increasing number of input frames. The
median image of the sequence is used as baseline.

lighted in Fig. 5. The achromatic model tends to produce
images with colors that are more faithful to the original. In
addition we observe that the obtained tricolor reflectance
from the chromatic model becomes more and more greyish
as we increase the depth of the recurrent network (L > 1).
For all these reasons we performed the next experiments
with the use of the achromatic model.

5.2. The Influence of the Number of Images in a
Sequence

We analyze the influence of the number of images on
the predicted reflectance by testing the U-net and CGRU
(L = 1) models on our Washington real test set. The Fig.
6 illustrates the results obtained with a number of input im-
ages T that varies between 1 and 20. The figure clearly
shows the superiority of U-net against CGRU on this test
set. As expected, increasing the number of input frames
increases the performance. However CGRU behaves dif-
ferently: it quickly converges towards its maximum perfor-
mance after a few frames, contrarily to U-net whose per-
formance w.r.t. the number of input frames appears more
linear.

We show the non-linear behavior of the CGRU in Fig.

7, that displays two sequences of the validation set and the
predicted output over time (b-i). Notice that the shadow
formed by the flower pot on the top sequence quickly dis-
appears from the prediction. Although the convergence
is fast, the output is not disturbed by new challenging in-
put frames that contain hard cast shadows (Fig. 7 (f)) nor
over/under-exposed frames (Fig. 7 (h-i)). The bottom se-
quence is another example of a robust prediction: when the
light direction abruptly changes from Fig. 7 (h) to Fig. 7
(i), no shadow is added at the right of the green hose, but
the left shadow of the hose and the coffin are largely atten-
uated. This is a case where the prediction overperforms the
reference. It means that the recurrent model, by its simplic-
ity, easily generalizes to produce reflectance images that are
even better than the pseudo-reflectance images.

A clear disadvantage of U-net is that it needs to be re-
trained each time we change the number of input frames,
because of its rigid architecture. On the contrary the pre-
diction of CGRU (L = 1) is improved only by feeding it
another image, because it processes the input images se-
quentially. The number of images CGRU (L = 1) can pro-
cess without the need for another training is virtually infi-
nite. Note that it is the case for most optimization-based
methods like [32, 23, 18]. We also tested [18] with differ-
ent numbers of input images and it is always outperformed
by our models (e.g. LMSE = 0.0198 for T = 5 or LMSE
= 0.017 for T = 20). In the next subsection we will see
further comparisons with state-of-the-art methods.

5.3. Comparison with State-Of-the-Art Methods

We compare our models to state-of-the-art methods [32,
23, 18, 22]. In [32, 23, 18], the same assumptions as ours
are made: the viewpoint is fixed and we process a sequence
of 15 images. For [18], the α parameter value that produces
best results in our dataset is 100; we set the number of clus-
ters to 20. We choose to compare to [32] because despite
its age it is one of the few methods whose results still com-
pete with [18]. For [23], we keep the same parameters as
in the original paper. We also compare our models to the
recent single image method [22]: we obtain the results by
computing the temporal median of the predicted reflectance
over the sequence. Note that we use the temporal median of
the input raw sequence as baseline.

Numerical results Numerical results are presented in the
table 1. It is shown that our models largely outperform all
other methods. U-net seems to perform the best, followed
by CGRU with a single depth layer (CGRU-1). Surpris-
ingly deep recurrent networks (L > 1) do not outperform
the single layer one; networks with 3 and 4 layers are not
shown because they produce worse results, only CGRU-2 is
showed (L = 1). Visually we observe that the deeper the
CGRU, the blurrier the predictions tend to be. Training on
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Figure 7: Our neural network performing on two sequences of the validation dataset. (a) Top: median image. Bottom: refer-
ence (pseudo-reflectance). (b-i) Input images It (top) and output images ht (bottom) at times t = 0, 2, 4, 6, 8, 10, 12 and 14.
Best viewed numerically.

Washington Virtual Dataset Washington Real Dataset MIT Dataset
Metric MSE LMSE DSSIM Variance MSE LMSE DSSIM MSE LMSE DSSIM
Median 0.1498 0.0586 0.3613 125 0.0082 0.0074 0.2139 0.0573 0.1511 0.1400
[32] 0.1334 0.0689 0.3556 111 0.0087 0.0105 0.3039 0.0497 0.1364 0.1470
[23] 0.1378 0.0748 0.3433 103 0.0077 0.0076 0.2001 0.0448 0.1089 0.1289
[22] (median) 0.0770 0.1062 0.3138 2 0.0095 0.0303 0.2363 0.0292 0.0892 0.1498
[19] 0.0718 0.0885 0.3002 79 0.0107 0.0173 0.2541 0.0381 0.0920 0.1426
CGRU-2-TV 0.0661 0.0598 0.3179 15 0.0049 0.0097 0.2206 0.0377 0.0770 0.1462
CGRU-2-L1∗ 0.0718 0.0596 0.2914 27 0.0046 0.0093 0.2394 0.0266 0.0662 0.1335
CGRU-2-L1 0.1017 0.0611 0.3701 46 0.0037 0.0066 0.2060 0.0365 0.0698 0.1374
CGRU-1-TV 0.0820 0.0506 0.3149 69 0.0061 0.0067 0.2198 0.0264 0.0592 0.1354
CGRU-1-L1∗ 0.0712 0.0596 0.2780 40 0.0064 0.0096 0.2365 0.0263 0.0632 0.1315
CGRU-1-L1 0.0715 0.0533 0.3216 58 0.0052 0.0076 0.2192 0.0246 0.0581 0.1342
U-net-TV 0.0836 0.0439 0.3222 35 0.0023 0.0057 0.2071 0.0283 0.0755 0.1418
U-net-L1∗ 0.0824 0.0536 0.3305 32 0.0019 0.0058 0.2046 0.0407 0.0862 0.1271
U-net-L1 0.0847 0.0509 0.3233 23 0.0015 0.0056 0.1993 0.0236 0.0578 0.1309

Table 1: Numerical results on our test dataset. The lower the better (in bold). Variance is 105× the original value.

the virtual train set in addition to the real train set (models
marked with a * in the table 1) only improves results on the
virtual test set. However the performance of deep CGRU
L > 1 are improved when additional synthetic data is used,
from which we can infer that their mediocre performance
compared to simpler models is due to overfitting.

Illumination invariance criterion In addition to previ-
ously presented metrics, we add an illumination invariance
criterion. It is the variance of the reflectances from several
sequences of images of the same scene captured under dif-
ferent illuminations. Since in our Washington dataset we
have 10 different sequences of illuminations per scene, we
compute the variance over the 10 predicted reflectances; the



Reference Median [32] [23] [22] [18] CGRU-L1 U-net-TV U-net-L1

Figure 8: Comparison with state-of-the-art method on real Washington (first two rows) and MIT (last two rows) datasets. The
median image is used as baseline for comparison. ”TV” means that the total variation was used in the loss; we write ”L1”
otherwise.

lower variance the better. The SIID method [22] outper-
forms the others by far. We believe the way the model was
trained enforced the illumination invariance of their output
(which was a key contribution of their work). Nevertheless
the quality of the predicted reflectance is inferior to ours.

Loss function We compare the performance our models
trained with either the L1 norm only (written ”L1” on the ta-
ble 1), or the additional total variation term (written ”TV”).
We observe that the TV term penalizes the network in gen-
eral. However its resulting prediction is visually interesting.
In Fig. 8 we can state that the TV network performs better in
the case of a simple uniform reflectance (e.g. for the paper
on the third row). In contrast it performs poorly in the pres-
ence of highly detailed images such as the turtle (last row),
smoothing out the details on the shell. The reason why it
generally underperforms the simple yet generic L1 loss, is
probably because it oversimplifies the predicted reflectance,
making it piece-wise constant where texture should be left
untouched. Nevertheless even trained with the TV loss, the
U-net model still outperforms state-of-the-art approaches.

Runtime performance Like in [24] (where they use a ge-
ometric proxy and user scribbles), our implementation is
real-time. In contrast, [34] processes a single frame in a
minute, and [16] in ten minutes. The faster network is U-net
(3ms to process 15 frames of size 384× 256), then CGRU-
1 (7ms) and finally CGRU-2 (17ms). BigTime [22] is also
quite fast even when applied to the whole sequence (4ms).
Other methods [32, 23, 18] are iterative and take approxi-
mately 30s. Note that we could obtain the reflectance with
[32] faster if we computed the pseudo-inverse directly in-
stead of solving the problem iteratively as we did.

5.4. Limitations

Our model is not exempt of limits, especially when it
comes to decompose images that have a complex shading,
such as the panther in the MIT dataset. Although cast shad-
ows are removed or at least well attenuated, shading in the
form of ambient occlusion is still clearly visible. We suspect
that this incapability to completely remove self-shadowing
on non-convex parts of the object may be due to the fact that
the model training is supervised by incorrect reflectance im-
ages. Since the pseudo-ambient lighting used to capture so
called ground truth reflectance does not prevent ambient oc-
clusion and inter-shadowing, it is not surprising that it fails
at inference stage.

6. Conclusion

We have presented an end-to-end method to estimate
the reflectance from a sequence of images that are cap-
tured from the same view under various illuminations. Con-
trary to state-of-the-art approaches, we do not rely on any
prior knowledge on reflectance, nor hand-crafted priors, but
rather learn from the data itself. As a consequence no pa-
rameter tuning is needed at inference time. Two different
models are proposed to solve this problem, based on U-net
and recurrent network (CGRU), while the earlier has the ad-
vantage of being fast and provides better results, the latter
is more flexible and requires less memory storage as it pro-
cesses any number of views sequentially. Both networks
process sequences in real-time and outperform state-of-the-
art methods. Moreover a new dataset has been provided,
including sequences of images and their ground truth re-
flectances. We hope this will encourage people to train and
evaluate their networks for the tasks of single and multiple
image intrinsic decomposition.
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Seidel, C. Richardt, and C. Theobalt. LIME: Live Intrinsic
Material Estimation. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018. 2
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